Traumatic wounds include a group of acute, generally extensive, wounds with loss of cutaneous lining, associated or not with fractures. They are represented by degloving wounds, exposed fractures, wounds associated with muscular crushing, and others, affecting predominantly patients of economically active age.
The stimulation to the formation of granulation tissue in these wounds may be responsible for the reduction in the complexity of the reconstruction option. For example, NPT can promote the coverage of exposed bones and tendons by granulation tissue, allowing wound closure by means of skin grafting, rendering unnecessary the use flaps, with and without concomitant use dermal matrices.
In 2012, Blum et al. evaluated the effect of NPT on the rate of infection in 220 patients with exposed tibial fractures, through a multicenter retrospective cohort study. The infection rate of the NTP group was lower (8.4% x 20.6%, p=0.01) compared with the group receiving conventional moist dressing. In 2006, Yang et al. evaluated the efficacy of NPT in the Treatment of 34 patients with fasciotomy wounds after traumatic compartment syndrome. The mean time to final wound closure was 6.7 days for the NPT group and 16.1 days for the conventional moist dressing group (p<0.05).
In 2013, Milcheski et al. studied 178 patients with traumatic lower limb wounds, most of them represented by degloving wounds. NPT significantly reduced the morbidity and healing time when compared with the previously used conventional dressings. According to the authors, NPT is useful in the treatment of acute traumatic wounds, acting as a bridge between emergency treatment and definitive cutaneous coverage.